Semi-Supervised Heterogeneous Fusion for Multimedia Data Co-Clustering
نویسندگان
چکیده
منابع مشابه
Semi-supervised Clustering on Heterogeneous Information Networks
Semi-supervised clustering on information networks combines both the labeled and unlabeled data sets with an aim to improve the clustering performance. However, the existing semi-supervised clustering methods are all designed for homogeneous networks and do not deal with heterogeneous ones. In this work, we propose a semi-supervised clustering approach to analyze heterogeneous information netwo...
متن کاملSemi-Supervised Co-Clustering for Query-Oriented Theme-based Summarization
Sentence clustering plays an important role in theme-based summarization which aims to discover the topical themes defined as the clusters of highly related sentences. However, due to the short length of sentences, the word-vector cosine similarity traditionally used for document clustering is no longer suitable. To alleviate this problem, we regard a word as an independent text object rather t...
متن کاملFuzzy semi-supervised co-clustering for text documents
In this paper we propose a new heuristic semi-supervised fuzzy co-clustering algorithm (SS-HFCR) for categorization of large web documents. In this approach, the clustering process is carried out by incorporating some prior knowledge in the form of pair-wise constraints provided by users into the fuzzy co-clustering framework. Each constraint specifies whether a pair of documents “must” or “can...
متن کاملExtracting Prior Knowledge from Data Distribution to Migrate from Blind to Semi-Supervised Clustering
Although many studies have been conducted to improve the clustering efficiency, most of the state-of-art schemes suffer from the lack of robustness and stability. This paper is aimed at proposing an efficient approach to elicit prior knowledge in terms of must-link and cannot-link from the estimated distribution of raw data in order to convert a blind clustering problem into a semi-supervised o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Knowledge and Data Engineering
سال: 2014
ISSN: 1041-4347
DOI: 10.1109/tkde.2013.47